#### **DARPA Advanced Energy Technologies**

Robert Nowak (Phone: 703-696-7491; Fax: 703-696-3999; E-mail: rnowak@darpa.mil) DARPA/DSO 3704 North Fairfax Drive Arlington, VA 22203-1714

#### **Portable Power — Opportunities**

- ★ Batteries: significant improvements over existing systems; >> 2X Specific Energy/Power
- **★** Fuel Cells, Direct Methanol

Methanol Crossover Cathode Catalyst Activity and Methanol Tolerance Anode Catalyst Activity Membrance Electrode Assembly Processing

- **★** Fuel Cells, Alternative Fuel Options and Concepts
- **★** TPV and AMTEC

Low Cost and Efficient PV Cells
Efficient TPV Cavity Designs
Compact AMTEC Designs
Efficient Fuel Combustion at Low Flow Rates
High Temperature Heat Recuperation

#### **Mobile Electric Power — Opportunities**

#### **★** Fuel Reforming

Size Efficiency Sulfur Removal and/or Tolerance Hydrogen Purity Fuel Cell Integration

#### **★** Customize for the Military

Operation and Maintenance

System Size and Weight
System Efficiency
Environmental Isues:
 shock, vibration, temperature, altitude, salt spray,
 dust, etc.
Signature:
 acoustic, thermal, etc.



### **Advanced Energy Technologies**



**Defense Sciences Office** 

### Power for the Military

Mobile Electric Power 2 - 100 kW

Portable Power 50 - 500 W

Energy Harvesting < 5 W



- Silent Watch
- Field Power Stations



- Battery Replacement
- Micro-Climate Cooling
- Battery Charging

Micro - Internetted Unattended Ground Sensor





- Ground Sensors
- Micro Robots



# Mobile Electric Power 2 - 100 kW Fuel Reformer Demonstrations



**Defense Sciences Office** 

#### 100 kW PAFC



- 14 kW Tested
- 100 kW Fabrication



Georgetown U. Bus

#### 20 kW PEMFC



10 kW SOFC

#### **Multipurpose Shelter**





## System Mass vs. Mission Duration Mobile Electric Power - 10 kW (Logistics Fuel)



**Defense Sciences Office** 





### **Energy Conversion vs. Energy Storage**



**Defense Sciences Office** 



**Driving Force:** Substantially decreased size, weight, and cost with improved safety and environmental compliance → Increased force mobility



# Portable Power 50 - 500 W



**Defense Sciences Office** 













# System Mass vs. Mission Duration Portable Power - 500 W



**Defense Sciences Office** 





## MIT Micro Turbine Generator Performance Comparison



**Defense Sciences Office** 





Power Output Energy Content Weight Volume μ **Turbogen\*** 50 W 175 W hr 50 g 50 cc 50 W 175 W hr 1100 g 880 cc

Specific Energy Energy Density

3500 W hr/kg 3 W hr/cc 175 W hr/kg 0.2 W hr/cc



 <sup>\*</sup> Effort lead by MIT; all values include fuel



### The Portable Power Burden for 10 kW-hr of Electrical Energy



**Defense Sciences Office** 



**Batteries** 





## AMTEC



DMFC (BA-5590 Equivalent)



**Microturbines**